21 research outputs found

    The role of cytokinins in clubroot disease

    Get PDF
    Clubroot (Plasmodiophora brassicae) is a pathogen of Brassicaceae that causes significant reductions in yield as a consequence of gall formation in the root and hypocotyl of infected plants. The pathogen hijacks host vascular cambium development, and cytokinins are implicated in this process. This paper uses transcriptomics and metabolomics to investigate changes in cytokinin metabolism during gall formation of clubroot-infected Arabidopsis thaliana. RNASeq analysis of infected tissue showed that host cytokinin metabolism was strongly down-regulated both at the onset and late stages of gall formation. Expression of host genes associated with cytokinin biosynthesis, signalling, degradation and conjugation was strongly repressed. Analysis of cytokinin precursors, active components and conjugates by microanalytical techniques was consistent with these transcriptional responses. Two isopentenyltransferase genes associated with cytokinin biosynthesis are present in the P. brassicae genome and are expressed throughout gall formation. The impact of pathogen-derived cytokinins on the total cytokinin content of infected tissue and host gene expression was minimal in wild type plants. However, infection of ipt1;3;5;7 mutants that are severely restricted in their ability to synthesise active cytokinins led to an increase in expression of host cytokinin-responsive genes. We interpret these results as indicating that P. brassicae can synthesise small amounts of cytokinin, but this has little impact on the host plant as the ipt1;3;5;7 phenotype is not rescued. Intriguingly, plasmodial development was slowed and spore viability reduced in these mutants indicating a potential role for cytokinins in plasmodial development

    Root ABA and H+-ATPase are key players in the root and shoot growth-promoting action of humic acids

    Get PDF
    Although the ability of humic (HA) and fulvic acids (FA) to improve plant growth has been demonstrated, knowledge about the mechanisms responsible for the direct effects of HA and FA on the promotion of plant growth is scarce and fragmentary. Our study investigated the causal role of both root PM H+-ATPase activity and ABA in the SHA-promoting action on both root and shoot growth. The involvement of these processes in the regulation of shoot cytokinin concentration and activity was also studied. Our aim was to integrate such plant responses for providing new insights to the current model on the mode of action of HA for promoting root and shoot growth. Experiments employing specific inhibitors and using Cucumis sativus L. plants show that both the root PM H+-ATPase activity and root ABA play a crucial role in the root growth-promoting action of SHA. With regard to the HA-promoting effects on shoot growth, two pathways of events triggered by the interaction of SHA with plant roots are essential for the increase in root PM H+-ATPase activity-which also mediates an increase in cytokinin concentration and action in the shoot-and the ABA-mediated increase in hydraulic conductivity (Lp(r))

    Novel Cytokinin Derivatives Do Not Show Negative Effects on Root Growth and Proliferation in Submicromolar Range

    Get PDF
    BACKGROUND: When applied to a nutrition solution or agar media, the non-substituted aromatic cytokinins caused thickening and shortening of the primary root, had an inhibitory effect on lateral root branching, and even showed some negative effects on development of the aerial part at as low as a 10 nanomolar concentration. Novel analogues of aromatic cytokinins ranking among topolins substituted on N9-atom of adenine by tetrahydropyranyl or 4-chlorobutyl group have been prepared and tested in standardized cytokinin bioassays [1]. Those showing comparable activities with N(6)-benzylaminopurine were further tested in planta. METHODOLOGY/PRINCIPAL FINDINGS: The main aim of the study was to explain molecular mechanism of function of novel cytokinin derivatives on plant development. Precise quantification of cytokinin content and profiling of genes involved in cytokinin metabolism and perception in treated plants revealed several aspects of different action of m-methoxytopolin base and its substituted derivative on plant development. In contrast to standard cytokinins, N9- tetrahydropyranyl derivative of m-topolin and its methoxy-counterpart showed the negative effects on root development only at three orders of magnitude higher concentrations. Moreover, the methoxy-derivative demonstrates a positive effect on lateral root branching and leaf emerging in a nanomolar range of concentrations, in comparison with untreated plants. CONCLUSIONS/SIGNIFICANCE: Tetrahydropyranyl substitution at N9-position of cytokinin purine ring significantly enhances acropetal transport of a given cytokinins. Together with the methoxy-substitution, impedes accumulation of non-active cytokinin glucoside forms in roots, allows gradual release of the active base, and has a significant effect on the distribution and amount of endogenous isoprenoid cytokinins in different plant tissues. The utilization of novel aromatic cytokinin derivatives can distinctively improve expected hormonal effects in plant propagation techniques in the future
    corecore